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Principal Components and Scale Dependence

Introduction

The principal component method is an important analytical

technique. It computes scaled scores from multivariate data

(Morrison 1990, chapter 8) and achieves parsimony in linear

regression (Johnston 1984, pp. 481-482, 542-544). As orthogonal

regression, the method is applicablg when the independent

variables are subject to random errors of measurement (Johnston

1984, pp. 428-435; Malinvaud 1980, chavter 10). However, there

are concerns about the scale depenaence of principal components:

"This dependence on the unit of measurement is obviously a

weakness of the principal component technique....If a variable is

measured in such small units that its numerical values dominate

those of the other...variables, the first principal component

will reflect the behavior of this particular variable rather

closely...." (Theil 1971, p. 55).

"Clearly, principal components are not invariant under linear

transformation, including separate scaling, of the original

coordinates. Thus the principal components of the covariance

matrix are not the same as those of the correlation matrix or of

some other scaling according to measures of 'importance'

There does not seem to be any aeneral elementary rationale to

motivate the choice of scaling of the variables as a preliminary

to principal components analysis on the resulting covariance

matrix" (Gnanadesikan 1977, pp. 11-12).

"Changing the unit of measurement of some variables will in

general lead to different values of those log-likelihood ratio

statistics that are associated with the [common principal
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component] model...." (Flury 1988, p. 158).

"The components obtained from [the covariance matrix and the

correlation matrix] are not in general the same, nor is it

possible to pass rom one solution to another by a simple scaling

of the coefficients....Furthermore...the sampling theory of

components extracted from correlation matrices is exceedingly

more complex than that of covariance-matrix components" (Morrison

1990, p. 314).

"A tacit assumption when using covariance input is that the

variables should not have grossly different variances. If they

do...then the first few principal components will be pulled

toward those variables with the larger variances" (Dillon and

Goldstein 1984, pp. 33-35).

However, the situation is more favorable than these comments

suggest. Malinvaud (1980, pp. 39-42) shows how a linear

transformation of the variables changes the principal components.

In this note, Malinvaud's theorem is reformulated to address the

issue of scale dependence. We argue that the principal component

method has in fact a kind of invariance when the normalization is

modified in an obvious way. Then the effect of a change in units

is as transparent as in linear regression, and principal

components can be used without apology.

A renormalization

Suppose that N joint observations on K variables are arrayed

in a NxK matrix X. If each variable is measured in deviations

from its sample mean, then the covariance matrix is S = (1/N)X'X.

Concretely, we consider the following hypothetical data matrix X,

where N = 15 and K = 3:
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Table 1. A Data Matrix

Variables

1 2 3

.9260 .5004 .4169

1.6620 1.9718 1.4486

-.3018 -1.0531 -.4306

-.2614 .7813 -.0460

1.3143 1.7030 -1.4224

.1500 -.0766 -.2453

-.8937 -1.0059 -.6061

.8243 1.1856 .1651

-1.2773 -1.9401 -1.5147

-.0776 .6863 1.4251

-1.5846 -1.5090 -.9391

1.3235 .1756 .6682

-.6865 -.7981 -.6070

-1.4029 -1.0746 .1414

.2855 .4534 1.5459

We have S =

1.0286 1.0127 .4375

1.0127 1.3148 .5579

.4375 .5579 .8913

The first principal component of S is b, a column vector of K

elements. As usual, we choose b and the Lagrange multiplier L to

maximize

b'Sb -L(b'b -1) .

The first-order conditions for a maximum are
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where I is the identity matrix of order K. A nontrivial solution

exists if and only if the determinant

det(S - LI) = 0 . (3)

The largest root of (3) is of course the largest eigenvalue

of S. When this value is substituted into (2), b is found to be

the corresponding eigenvector. For our hypothetical data,

equations (2) and (3) are satisfied by L = 2.5052 and

b = (.5958, .6954, .4018)'. From these results one can also

compute 15 scaled "scores" Xb.

To investigate scale dependence, let us suppose that each

observation on the first variable is multiplied by a positive

constant c; that is, the first column of X is multiplied by c. As

a result, the first row and the first column of S are multiplied

by c. We have emphasized that this change of units alters L and b

in a complicated way.

For example, if the scale factor c = 10, then the covariance

matrix of our hypothetical data becomes

102.8566 10.1270 4.3755

10.1270 1.3148 .5579

4.3755 .5579 .8913

Its largest eigenvalue equals 104.0486, and the corresponding

eigenvector is (.9942, .0982, .0427)'. This eigenvalue and its

eigenvector are not related in a simple way to the values

obtained before the first variable was rescaled. The change of

units makes the rescaled variable dominate the first principal

component. The 15 scores xh likewise undergo a complicated

transformation.

Suppose, however, that the normalization is also modified. In
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= 1, the first term is to be replaced by (cb112. The

situation is now that the first row and the first column of

(S - LI) have been multiplied by c. According to a well-known

theorem on determinants (Morrison 1990, P. 45), (3) becomes

c2det(S - LI) = 0 . (4)

A comparison of (3) and (4) shows that the largest eigenvalue

of S is a solution to both equations. The change of units and the

renormalization leave the eigenvalue unaltered.

How is the eigenvector affected by these adjustments ? We

have just remarked that (S LI) is multiplied by c in its first

row and column. In equations (2), let us divide the first

equation by c. The effect of the change of units and the

renormalization is then simple: the first column of (S - LI) has

been multiplied by c. That column contains the coefficients of

bl. It follows that the new eigenvector is identical to the old

eigenvector except that bl is replaced by blLg. Moreover, the N

scores Xb are unaltered by the change in units.

We return to our example, where the first variable has been

multiplied by 10 and the normalization is now (10b1)2

= 1. Dividing the first equation in (2) by 10, we have

b22 b32

(10.2857 - 10L)b1 + 1.0127b2 + .4375b3 = 0

10.1270b1 + (1.3148 - L)b2 + .5579b3 = 0

4.3755b1 +.5579b2 + (.8913 - L)b3 = 0

These equations have the solution b = (.0596, .6954, .4018)'.

Compared to the original solution, 131 has been divided by 10,

while b2, b3 and the scores DI are unchanged.
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Conclusions

This result suggests four comments. First, the proposed

renormalization should not be disconcerting. After all, the

constraint Wb = 1 is imposed merely to avoid the trivial

solution b = O. Nothing of substance is involved in the choice of

a normalization; it is a matter of convenience. Writing on the

multidimensional analysis of preferences, Srinivasan and Shocker

(1973, p. 341) remark, "It appears more rational to believe that

the different dimensions have to be differentially weighted. The

weights take account both of the units in which each dimension is

scaled (scale factors) and the relative importance (or salience)

of each attribute....Normally the units in which each attribute

is measured will not be identical....Scale factors permit such

different units to be meaningfully combined into a single

preference measure."

Second, our proposal makes principal components behave

exactly like linear regression under a change in the units of an

independent variable; that is, bl becomes bl/c, and no other

coefficient is affected (Morrison 1990, pp. 96-97). Most

researchers who use multivariate methods take for granted this

invariance property of linear regression; they can now feel the

same assurance about principal components.

Third, our argument also applies to the K-1 smaller principal

components as long as cb1 replaces bl everywhere --in the

orthogonality constraints as well as in the normalization. Since

our procedure leaves all the eigenvalues unchanged, their sum

equals the trace of the original covariance matrix rather than

the trace of the covariance matrix after a change of units.
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Fourth, it is unlikely that a researcher would ever need to

compute the renormalization we propose. The adjustment is

hypothetical. It merely demonstrates that the choice of units is

inconsequential, as indeed it should be. In particular, suppose

that principal components are extracted from a correlation matrix

under the constraint E(bi2/sii) = 1, where sii is the variance of

variable i. Then the resulting scores are identical to the

scores obtained from the covariance matrix when Eb12 = 1.
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